
The behaviour layer
JavaScript: Part 1

Content Management

Structure
HTML

Content
Text, images etc.

Presentation
CSS

Structure
HTML

Content
Text, images etc.

Presentation
CSS

Behaviour
JavaScript

Ri
ch

ne
ss

 o
f e

xp
er

ie
nc

e

Progressive
Enhancement

The browser loads the HTML file and then any linked
resources such as the CSS file, the JavaScript file and
any media files (e.g. images). A single webpage is built
from many separate files.

CSSHTML

presentationstructure webpage in browser

style.cssindex.html

JavaScript

behaviour

script.js

+ + =

All three layers of the web standards model
combined…

The purpose of JavaScript is to add…
Behaviours to the user interface

var newLink = document.createElement("a");
var allParagraphs = document.getElementsByTagName("p");
var moreParagraph = allParagraphs[1];
newLink.setAttribute("href", "#");
newLink.setAttribute("class", "more-link");
newLink.innerHTML = "Read more";
moreParagraph.appendChild(newLink);

It does this with scripts that change how the content looks or
behaves in the browser depending on events. For example,
JavaScript can be used to change CSS values or add new CSS
properties to HTML elements.

What is a script?

<script>

1. Do something;

2. Do something else;

3. Do something with the results of 1 and 2;

4. Print the output of 3;

</script>

A script is a logical sequence of statements. Each statement
tells the browser to do something, so that, step-by-step, the
required outcome is achieved.

Hands on Javascript!

Head over to Moodle and download the folder
entitled “JavaScript Greeting – coding exercise”.

What does this script do?

<script>

var dateTime = new Date();

var hours = dateTime.getHours();

var minutes = dateTime.getMinutes();

document.write ("<p>The time is: " + hours + ":"

+ minutes + "</p>");

</script>

index.html
JavaScript can be placed
in the HTML file but
must be enclosed by
script tags. However, this
is not ideal.

Tip: var is short for “variable”
Think of a variable as being a small container that
is given a name and is used to store information.
You may also see the let and const keywords used
to declare variables.

Separating JS from HTML

<script src="script.js"></script>

var dateTime = new Date();

var hours = dateTime.getHours();

var minutes = dateTime.getMinutes();

document.write ("<p>The time is: " + hours

+ ":" + minutes + "</p>");

index.html
The script tags must be
placed in the HTML,
where you want the
output to appear.

script.js
The script is placed in an
external file and linked
to the HTML file in a
script tag.

An even better solution

<p id="time">Time goes here</p>

<script src="script.js"></script>

var dateTime = new Date();

var hours = dateTime.getHours();

var minutes = dateTime.getMinutes();

var msg = "The time is: " + hours + ":" + minutes;

var el = document.querySelector('#time');

el.textContent = msg;

index.html
The script tags should be
placed immediately
before the closing body
tag and the paragraph
goes wherever you want
the output to appear.

script.js
The script is updated so
that it changes an
existing element rather
than creating a new one.

Assigning elements to variables

<p id="time">JavaScript not available</p>

var time = document.getElementById('time');

Result = assigns the paragraph with ID “time” to a variable called “time”.

<p>Some content…</p>

var paragraph = document.getElementsByTagName('p')[0];

Result = assigns the first paragraph in the current document to a variable called “paragraph”.

The DOM provides
JavaScript with several
methods for accessing
elements within the HTML
document such as
getElementsByTagName,
getElementById and
querySelector. Once
elements have been
selected, JavaScript can be
used to manipulate them
in various ways.

<body>… </body>

var body = document.querySelector('body');

Result = assigns the body element to a variable called “body”.

Manipulating HTML elements

JavaScript being used to
change the content of a
HTML document, using the
innerHTML method.

<body>… </body>

var body = document.querySelector('body');
body.setAttribute ('class', 'page1');

Result = adds the class “page1” to the body element.

<body class="page1">… </body>

<p>Some content</p>

var paragraph = document.getElementsByTagName('p')[0];
paragraph.innerHTML = "Some replacement content";

Result = replaces the existing content with new content for the selected element.

<p>Some replacement content</p>

JavaScript being used to
change the styling of a
HTML document, using the
setAttribute method.

JavaScript: context

• Originally developed by Netscape with Sun Microsystems
is 1995

• Microsoft followed with Jscript
• JavaScript now standardised by ECMA* (not W3C)
• Got a bad name because of misuse by some designers
• Has now been rehabilitated and used with the DOM and

other web standards. This is sometimes referred to as
“DOM scripting”.

• ES6 (introduced in 2020) in the most recent version.

* European Computer Manufacturers Association

The nature of JavaScript

• JavaScript is a “client-side” scripting language.
• That means it runs in the browser on the client's own

device (phone, tablet, laptop).
• Scripts will therefore only work if the device supports

JavaScript and the user has it turned on.
• JavaScript should not be used for essential functions

(such as navigation) unless there is a fall-back that works
if JavaScript does not.

• JavaScript is used to progressively enhance web pages.

JavaScript and me

• In the past, web designers could get away with just using
HTML and CSS, leaving JavaScript to the “geeks”.

• However, most front-end developers are now expected
to have at least a rudimentary understanding of
JavaScript. Fortunately, JavaScript has become much
easier to use.

• Many developers also use JavaScript
frameworks/libraries like jQuery to make life easier but
developing a good understanding of “vanilla” JavaScript
should be your objective.

Where does it go?

• Just like CSS, scripts can be embedded in your HTML document,
or they can be placed in an external file and linked to from the
HTML document.

• Where scripts will be used by many pages, it makes sense to
store them in external files but if they are unique to a page, it
may be better to include them in the HTML document, thereby
saving an http request (more efficient).

• If scripts are added to the HTML file, they are usually best
located just before the closing </body> tag because the
browser will have completed the DOM (Document Object
Model) at that point.

Adding Scripts

<script>
 JavaScript goes here
</script>

<script src="script.js"></script>

Embedded scripts are enclosed in a
<script> tag.

Linked scripts also use the <script> tag
but a src (source) attribute is added to
point to the file. Usually, the file has a
.js extension. Notice that this forms
an empty element – there's nothing
between the opening and closing
tags.

Note: in HTML5, the type="text/javascript" attribute is not required
but it is required for XHTML.

Hello world!
A very simple script:

<script>

// A very simple script that prints "Hello World!"

document.write("<h1>Hello World!</h1>");

</script>

Example

The above example uses a single statement to write some markup to the document. The
script is placed between opening and closing script tags.

The text in quotes (including the html tags) is written to the document by JavaScript
using the document.write method.

Notice that the script includes a comment, which describes what the statement does.
Single-line comments begin with a double slash "//".

https://www.websitearchitecture.co.uk/resources/content-management/examples/class-01-js-00-hello-world.html

Getting the time and printing it
A more useful script:

<script>

// This script will print the time

var dateTime = new Date();

var hours = dateTime.getHours();

var minutes = dateTime.getMinutes();

document.write ("<p>The time is: " + hours +

":" + minutes + "</p>");

</script>

Example

This script uses four statements to
write the current time to the
document. The script uses the Date()
object and then the getHours and
getMinutes methods to assign those
values to the variables “hours” and
“minutes”.

The text in quotes is added to the
variable values for hours and minutes
before being written to the document
by JavaScript using the
document.write method.

https://www.websitearchitecture.co.uk/resources/content-management/examples/class-01-js-10-time.html

Day of the week
Not so simple:

<script>
// Sometimes, doing simple things in JavaScript is more complicated
// This script gets the name of the day of the week and prints it
var dateTime = new Date();
var dayNumber = dateTime.getDay();
var weekday = new Array(7);
weekday[0]="Sunday";
weekday[1]="Monday";
weekday[2]="Tuesday";
weekday[3]="Wednesday";
weekday[4]="Thursday";
weekday[5]="Friday";
weekday[6]="Saturday";
document.write("<p>Today is " + weekday[dayNumber] + "</p>");
</script>

Example We need to build an array of day names because JavaScript (unlike PHP) only knows
the day number. Arrays always begin with 0, so the week runs from day 0 to day 6.

https://www.websitearchitecture.co.uk/resources/content-management/examples/class-01-js-07-day-of-the-week.html

Testing for conditions
<script>
// The following code prints something different on a Wednesday
var dateTime = new Date();
var n = dateTime.getDay();
var weekday = new Array(7);
weekday[0]="Sunday";
weekday[1]="Monday";
weekday[2]="Tuesday";
weekday[3]="Wednesday";
weekday[4]="Thursday";
weekday[5]="Friday";
weekday[6]="Saturday";
if (weekday[n]==="Wednesday"){
 document.write("<p>Hurrah! Today is " + weekday[n] + ", it's a Greenwich
day.</p>");
}else{
 document.write("<p>Today is " + weekday[n] + ", just an ordinary day.</p>");
}
</script>

Example
This script uses an if else clause to decide what message should be printed. If today is Wednesday,
a special message is printed otherwise (else) a standard message is printed. Using this technique,
web pages can be dynamic, with content that changes depending on time.

https://www.websitearchitecture.co.uk/resources/content-management/examples/class-01-js-08-today.html

Objects, Properties & Methods

• Modern JavaScript supports Object Oriented Programming
(OOP).

• OOP envisions software as a group of co-operating objects.
• Each object (e.g. the Date object) has properties and methods

(e.g. the getHours method).
• A property is a value (say the number 5).
• A method is an action that the object can perform (e.g. tell you

how many properties an object has).
• Almost all the scripting you do will use this model.
• A web page is just a bunch of objects…

WHAT'S THIS DOCUMENT OBJECT MODEL THING?
DOM

The Document Object Model

Taken from: “Simply JavaScript” by Kevin Yank and Cameron Adams

The DOM is jointly controlled by the W3C
and WHATWG and is a standard method
for browsers and scripting languages to
access page elements. Effectively, the DOM
is a map of the markup in an HTML file.

Each object in the DOM is known as a
node. This diagram shows only the
element nodes. In reality, the DOM also
maps any attributes and the content within
elements.

You probably didn't realise it, but you use
the DOM every time you use a CSS
selector. The browser uses the DOM to
locate elements you select in your CSS.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

What is the purpose of the DOM?

Taken from: “JavaScript for Web Designers” by Mat Marquis

The Document Object Model has two purposes:
1. Providing JavaScript with a map of all the elements

on our page.
2. Providing us with a set of methods for accessing

those elements, their attributes, and their contents.

<html>
 <body>
 <main>
 <h1 class="page1">List</h1>
 <h2>Buy Groceries</h2>

 <li id="one">fresh figs
 <li id="two">pine nuts
 <li id="three">honey
 <li id="four">balsamic vinegar

 </main>
 <script src="js/list.js"></script>
 </body>
</html>

The code fragment above is interpreted by the browser and stored in memory
as a DOM tree. The next slide shows the DOM tree for this code. To keep things
simple, <head> is intentionally omitted.

Adapted from: “JavaScript & jQuery” by Jon Duckett (page 186)

HTML markup
When a browser receives an
HTML file, it must create a “map”
of the markup in the form of a
hierarchical model before the
web page can be rendered.

document

html

body

main

h1 h2 ul script attributeattribute

text text

li attribute li attribute

text

li attribute

text

li attribute

textem text

text

The DOM Tree
This is the DOM tree for the code
fragment on the previous slide.
Notice that nodes on the tree
include the attributes and text of
HTML elements as well as the
elements themselves.

Adapted from: “JavaScript & jQuery” by Jon Duckett (page 187)

The document node

Element nodes

Attribute nodes

Text nodes

Which version of the DOM?

• Just like HTML and CSS, the DOM has evolved through a number of
versions.

• The DOM Level 1 was standardised in 1997 by the W3C.
• DOM4, which is part of the HTML5 collection of technologies, is

developed jointly by W3C and WHATWG.
• Modern browsers support all the features of DOM3 and much of

DOM4 e.g. document.querySelector()
• DOM4 reached recommended status on 19th November 2015.
• However, DOM is now a “living standard” and, like HTML will

continue to evolve without numbered iterations.
• The standard was most recently updated on 19th December 2021.
https://dom.spec.whatwg.org/

https://dom.spec.whatwg.org/

DOM Scripting

Introduction to the DOM

Most of the work you will do with JavaScript can be described as
“DOM Scripting” because it mainly involved manipulating the DOM
in various ways. For example, we can use JavaScript to add, remove
or change HTML elements by editing the DOM. The great thing is,
it’s not as difficult as it sounds.

Most DOM Scripting involves just 3 steps:

1. Select querySelector
2. Make interactive addEventListener
3. Change styling setAttribute

The querySelector method is
particularly useful for us because it
allows HTML elements to be selected
using CSS selector syntax. For
example:

document.querySelector('.content')

Will select the first element in the
DOM tree with a class of “content”.
We could select all elements with a
class of “content” using the
querySelectorAll method.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

JAVASCRIPT SYNTAX
Case, White space, Semicolons and Comments

JavaScript is case sensitive

myNumber and mynumber are not the same
This is important because scripting decisions are often made on the
basis of comparing one thing with another.

getElementById
Notice that variable names and methods etc. use camel case. This
is used to ensure readability while avoiding the use of word
separators such as hyphens and underscores.

White space is unimportant*

var newLink = document.createElement("a");
var allParagraphs = document.getElementsByTagName("p");
var moreParagraph = allParagraphs[1];
newLink.setAttribute("href", "#");
newLink.setAttribute("class", "more-link");
newLink.innerHTML = "Read more";
moreParagraph.appendChild(newLink);

var newLink=document.createElement("a");var
allParagraphs=document.getElementsByTagName("p");var
moreParagraph=allParagraphs[1];newLink.setAttribute("href","#");newLi
nk.setAttribute("class","more-link");newLink.innerHTML="Read
more";moreParagraph.appendChild(newLink);

In JavaScript, this…

…is the same as this…

*But one is much easier to read than the other. We aim to write one
statement per line. This is the same principle as HTML and CSS.

Semicolons end statements

var newLink = document.createElement("a");
var allParagraphs = document.getElementsByTagName("p");
var moreParagraph = allParagraphs[1];
newLink.setAttribute("href", "#");
newLink.setAttribute("class", "more-link");
newLink.innerHTML = "Read more";
moreParagraph.appendChild(newLink);

In JavaScript, the semicolon is used to terminate a statement just as
semicolons are used in CSS to terminate declarations.

Strictly speaking, the semicolons are not required because JavaScript
interprets a line break as an end to a statement, but they are
normally used – this is a convention (like always using lower-case for
HTML elements).

Comments

// This part of the script creates a link and adds it to the HTML.
// We want this to happen on page load. Each statement runs, one
// after the other and forms a logical sequence.
var newLink = document.createElement("a");
var allParagraphs = document.getElementsByTagName("p");
var moreParagraph = allParagraphs[1];
moreParagraph.appendChild(newLink);

Comments are really important in JavaScript where they are used to
explain what a piece of code is doing. The syntax for a single line
comment looks like this:

Multi-line comments are just like CSS comments and look like this:

/* This part of the script creates a link and adds it to the HTML.
We want this to happen on page load. Each statement runs, one
after the other and forms a logical sequence.*/

THE BUILDING BLOCKS OF JAVASCRIPT
Values, variables and operators

Values (data types)

Numbers 56

Strings "letters and words"

Boolean true or false

Operators

+ plus 6+3 = 9

- minus 6-3 = 3

* multiply 6*3 = 18

/ divide 6/3 = 2

% modulo 6%3 = 0

Modulo gives the remainder of one value divided by another (12%5=2).

Variables

var myNumber = 36;
You can think of variables as being named boxes into which data
can be placed. This could be simple data like a number or a string of
text, or it could be an array containing many values.

var myNumber = 36;
myNumber / 3 === 12;
true
Variable names can be used in place of the value they contain, and
this is what makes programs dynamic. Two new ways to declare
variables were introduced with ES6 in 2020. You may see the let
and const keywords being used.

Working with variables

var myNumber = 36;
myNumber = myNumber / 3;

In the example above, the value contained in the myNumber
variable is changed from 36 to 12 (36 divided by 3 equals 12).

Comparison operators

== is equal 6+3 == "9"

!= is not equal to 6-3 != 4

=== is identical to 6*3 === 18

> Is greater than 9 > 2

>= Is greater than or equal to 6 >= 3

< Is less than 2 < 3

<= Is less than or equal to 4 <= 4

All of the above will return the boolean value true.

The distinction between is
equal to and is identical to
is important. Two things can
be equal, even if the data
types are different (e.g. a
number 9 and a string "9"
are equal). To be identical,
their value and data types
must both be the same.

What does this script do?
var dateTime = new Date();

var day = dateTime.getDay();

var el = document.getElementById('message');

var msg;

if (day < 4) {

 msg = "Wednesday is " + (3 – day) + " day(s) away.";

}else if (day == 4) {

 msg = "It's Wednesday!";

}else{

 msg = "You'll have to wait until next week for Wednesday.";

}

el.innerHTML = msg;

script.js
This script demonstrates
the basic form that
simple scripts take. The
first part gathers the
data, the second part
processes the data, and
the third part does
something with the
processed data. In this
case, we're getting the
day number and then
deciding what message
should be displayed and
finally, displaying the
message.

OK, I LIKE JAVASCRIPT, HOW CAN I LEARN MORE?
JavaScript is power

How can I learn JavaScript?

codecademy.com/learn/introduction-to-javascript

There are lots of online resources to help you learn JavaScript. However,
just like HTML and CSS, JavaScript has changed a lot over the years. Do
ensure that you use an up-to-date resource. The Code Academy courses
are very good, as are the video tutorials at Pluralsight.

https://www.codecademy.com/learn/introduction-to-javascript

Any good beginner books?

If you’re a complete beginner and
you’ve never done any programming
before, this book is written specially for
you. It assumes nothing and is
extremely clear. 3 cheers for Jon
Duckett!

javascriptbook.com

http://javascriptbook.com/

Something I can read on the bus?

Also designed for complete
beginners, Mat Marquis’ book is
an excellent, light read that
gently introduces the core
concepts of JavaScript and brings
them all together in the final
chapter with an exercise you can
follow.

abookapart.com/products/javascript-for-web-designers

https://abookapart.com/products/javascript-for-web-designers

What other resources are there?

eloquentjavascript.net

The third edition of Eloquent
Javascript by Marijn Haverbeke is
totally recommended if you want to
get to grips with JavaScript and dig a
little deeper. An online version of
the book is also available for free.
Check it out.

http://eloquentjavascript.net/

Start simple

• Don't be put off if you’ve never done any scripting before
or if JavaScript looks complicated.

• Start with the basics and work up from there.
• It takes time and a little frustration, but scripting can be

very rewarding and will give you power over your web
pages.

• Always follow a reliable reference and work from first
principles.

https://developer.mozilla.org/en-US/docs/Web/JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript

function endSlideshow() {
el = document.querySelector("slideshow");
el.style.display = "none";
return true;

}

	The behaviour layer�JavaScript: Part 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	What is a script?
	Hands on Javascript!
	What does this script do?
	Separating JS from HTML
	An even better solution
	Assigning elements to variables
	Manipulating HTML elements
	JavaScript: context
	The nature of JavaScript
	JavaScript and me
	Where does it go?
	Adding Scripts
	Hello world!
	Getting the time and printing it
	Day of the week
	Testing for conditions
	Objects, Properties & Methods
	What's this Document Object Model thing?
	The Document Object Model
	What is the purpose of the DOM?
	Slide Number 27
	Slide Number 28
	Which version of the DOM?
	DOM Scripting
	JavaScript Syntax
	JavaScript is case sensitive
	White space is unimportant*
	Semicolons end statements
	Comments
	The Building Blocks of JavaScript
	Values (data types)
	Operators
	Variables
	Working with variables
	Comparison operators
	What does this script do?
	OK, I like JavaScript, how can I learn more?
	How can I learn JavaScript?
	Any good beginner books?
	Something I can read on the bus?
	What other resources are there?
	Start simple
	function endSlideshow() {� el = document.querySelector("slideshow");� el.style.display = "none";� return true;�}

