
Building a CMS with PHP and MySQL

Content Management

Traditional, static website

HTML HTML HTML HTML

HTML

Every page of a website is rendered using a unique HTML file.
A five-page website = five HTML files.

Template-driven, dynamic website

PHP

PHP

Template-driven sites use one or more template files to
generate multiple pages by pulling data from a database.
This five-page website uses just two PHP files.

Data Template Pages compiled “on the fly”

How do links work?

PHP

How can the homepage file tell the template file which bit of
data it should use to compile the required page?

Homepage

PHP

Data Template Pages compiled “on the fly”

Passing data between scripts

Template

PHP PHP

Data can be passed from one PHP page to another using a URL parameter. This is a
bit of data (a number or a text string) which is added to the address (URL) of the
template file. In the example above, the value “8” is being sent and is identified by
the name “id”, just like assigning a value to a variable. The question mark character
“?” is used as a separator between the file path and the parameter.

article.php?id=8

Homepage

What it looks like in the wild

The link on this page (index.php) has a URL parameter added “id=8”. The script on the
linked page (article.php) will know to populate that page with article number 8, but…

<p>Read more»</p>

How does a script access the data?

All data passed to a file using a URL parameter is stored in a special super
global array called $_GET. Data in the array is available to PHP scripts. In the
example above, that data can be assigned to a variable like this:

Template

PHP PHParticle.php?id=8

Homepage

$article_id = $_GET['id'];

Multiple values

URL parameters can be used to send multiple values at once.
The ampersand character “&” is used as a separator between
name and value pairs. In the example above, id has a value of
“2” (an integer) and title has the value “good” (a string).
$_GET can contain multiple values because it is an array and
not just a simple variable.

Template

PHP PHP

article.php?id=2&title=good

Homepage

Validate that data!

Any data passed to a script via a URL parameter should be
considered potentially dangerous because it can easily be
tampered with. In the above example, the “8” could easily be
changed to something else, including a fragment of PHP! It
must therefore be validated before it can be used safely.

Template

PHP PHParticle.php?id=8

Homepage

Check the data type

An easy way to validate a URL parameter is to check the data
type. In this example, the data should be an integer and we
can check for that using the filter_var function:

Template

PHP PHParticle.php?id=8

Homepage

PHP can filter lots of different data types. Here, we’re checking that $_GET['id'] is an integer.

filter_var($_GET['id'], FILTER_VALIDATE_INT)

Testing for an integer

if (isset($_GET['id']) && filter_var($_GET['id'], FILTER_VALIDATE_INT)) {
 $article=$_GET['id'];
}else{
 header('HTTP/1.0 404 Not Found');
 exit("<h1>Not Found</h1>\n<p>The submitted data is not valid.</p>");
}

The above if/else statement checks the incoming data and reacts depending on whether
the data looks OK or not. It uses the isset function to check whether $_GET['id'] contains a
value and the filter_var function is used to check that the value is an integer (“&&” means
that both conditions must be true). If the test is passed, the data is assigned to the variable
$article. If the test is not passed, a 404 error is generated, the script is terminated, and a
message is printed. The filter_var function was introduced in PHP 5.2.

Building the query

$query = "SELECT article_id, headline, article, author, published
FROM articles WHERE article_id = $article";

Once we’re certain that the data passed to the script via the URL
parameter is an integer, we can use it to select the requested article from
the database. The query above includes a WHERE clause that will return
only the article matching the value contained in $article.

Testing for other data types

Testing for an integer is very easy but testing for other data
types is more difficult. Say we wanted to pass a text string.
We can check that it is a string but that still doesn’t tell us
whether the string is good or bad, so we must be extra
careful with string data and all strings should be sanitized to
remove or escape suspicious characters such a quotes.

Template

PHP PHParticle.php?title=bad

Homepage

Sanitising string data

if (isset($_GET['id']) && filter_var($_GET['id'], FILTER_SANITIZE_STRING)) {
 $article=$_GET['id'];
}else{
 header('HTTP/1.0 404 Not Found');
 exit("<h1>Not Found</h1>\n<p>The submitted data is not valid.</p>");
}

One of the first things a hacker will do to test for vulnerability is modify the URL parameter
to include a quote character. This could be used to prematurely terminate the query string
and insert some malicious code into your script. The FILTER_SANITIZE_STRING option will
encode all quotes so that the script interprets them as part of the string and not as a string
termination character. There are many methods for sanitizing strings depending on the
expected output, but you must at least deal with quotes to combat SQL injection.

Just using:
filter_var($var, FILTER_SANITIZE_STRING)
would have avoided this problem because the string:
Robert'); DROP TABLE students;--
would have been sanitized as the harmless:
Robert\'); DROP TABLE students;--

Cartoon by xkcd

http://xkcd.com/327/

Database design

The easiest way to keep your scripts and websites secure is to rely on integer values for
identifying content (articles, news items etc.) because they are easy to test for. This is why
it’s always a good idea to include a unique index value in your database tables. The
database table above is designed to store articles, but the first column is just an index
value called article_id. This means that each article can be identified by a unique integer.
Note that this field is also a primary key and auto-increments.

If we structure our
database tables so that
they always have a
unique index, which is an
integer, we can then refer
to each row of data by its
integer value. In this
example, each article can
be uniquely identified by
its article_id.

The full sequence

1. User clicks link that includes a URL parameter (an
integer).

2. A PHP script in the target file tests to see if the data
received via $_GET['id'] is valid (is it really an integer?).

3. If the test is passed, the value is assigned to a variable.
4. An SQL query is built using the value as an identifier.
5. The query is sent to the database.
6. The relevant content is returned and can be formatted

and printed by PHP in the usual way.

Warning

Never use the GET method to send sensitive data between
scripts because any data sent will be clearly visible in the URL.

Always validate and sanitise any data received via the GET
method; it may have been tampered with and should be
considered potentially harmful.

Yay! I can build a (safe) CMS

Once you understand the
importance of data security,
and how to effectively protect
your site from hackers by
filtering all incoming data, you
are ready to build your very
own content management
system.

Notice that both these pages
are generated from the same
template file (article.php). The
only difference is the URL
parameter, used to indicate
which database entry is
required.

article.php?id=3

article.php?id=6

slideshow.php?status=end

	Building a CMS with PHP and MySQL
	Traditional, static website
	Template-driven, dynamic website
	How do links work?
	Passing data between scripts
	What it looks like in the wild
	How does a script access the data?
	Multiple values
	Validate that data!
	Check the data type
	Testing for an integer
	Building the query
	Testing for other data types
	Sanitising string data
	Slide Number 15
	Database design
	Slide Number 17
	The full sequence
	Warning
	Yay! I can build a (safe) CMS
	slideshow.php?status=end

