
Page Layout

Design for web content

Grids
• Grids lie at the heart of most modern webpage designs.
• They provide an easy way to organise content and if used

carefully, can help the reader find information more easily.

Example of a 12 column grid
based on a 960px wide page
with 20px gutters and 10px
margins.

https://read.compassofdesign.com/guides-gutters-and-grids-2ce6092fc3de

https://read.compassofdesign.com/guides-gutters-and-grids-2ce6092fc3de

12 column grid

The reason 12 column grids are so
popular is because the number 12 is
divisible by 2, 3, and 4. This gives a
range of possibilities. See the example
here, which exhibits 1 column, 2
column, 3 column and 4 column
arrangements of content. All possible
with a 12 column grid.

On mobile devices, the document
displays as a 1 column grid.

innocentdrinks.co.uk

Fold at 1280

A visually unsatisfactory
arrangement of columns.

Fold at 1280

A 3 column layout based
on a 6 or 9 column grid.

Fold at 1280

The same 3 column layout
but with the flight search
box flipped.

A 4 column layout, which is a
responsive/adaptive hybrid.
The mobile version is a
single column width.

The 2020 layout is a mess as
they try to leverage more
revenue via advertising.

Alignment gives page
layouts coherence.

<div id="content">

</div> <!-- close #content -->

/* layout using floats */
#content {

width: 800px;
margin: 0 auto;
padding-top: 25px;

}
header {

height: 143px;
margin-bottom: 35px;

}
main {

width: 552px;
float: left;
padding-right: 25px;
border-right-width: 1px;
border-right-style: solid;
margin-bottom: 20px;

}
aside {

width: 200px;
float: right;
margin-bottom: 15px;

}
footer {

clear: both; /*clear floats*/
padding: 15px 0 20px 0;
border-width: 3px 0;
border-style: solid;
margin-bottom: 10px;

}

<aside>

</aside></main>

<main>

<header>

</header>

</footer>

<footer>

Most webpages are composed
of one or more content blocks
and designing a page layout is a
combination of defining those
blocks with markup using HTML
semantic container elements
like <main>, <aside> and
<footer>. Sometimes you may
also require a <div> with a
sensible class/id name. The
layout is then created by styling
these elements with CSS to
control their relative position
and size. The CSS on the right
might be used to produce the
fixed-width layout shown.

<div id="content">

</div> <!-- close #content -->

/* layout using grid */
#content {

display: grid;
grid-template-columns: 640px 300px;
grid-template-rows: auto;
grid-template-areas:
"header header"
"main aside"
"footer footer";
grid-gap: 20px;
width:960px;
margin: 20px auto;

}
header {

grid-area: header;
}
main {

grid-area: main;
}
aside {

grid-area: aside;
}
footer {

grid-area: footer;
}
header, main, aside, footer {

padding: 25px;
border: 1px solid #444;
background-color: #eee;

}

<aside>

</aside></main>

<main>

<header> </header>

</footer> <footer>

This page has essentially
the same layout as the
previous example, but
this one used CSS Grid.
The markup is identical
but the CSS is different.
This approach is typical
of modern page layout
techniques.

This example uses the
grid named areas
syntax, which is
probably the easiest to
visualise.

The 960 Grid System
• In the past, grid system generators such as 960 (fixed width) were

popular with developers because they did a lot of the hard work.
• The name comes from the optimum page width for those using a

1024px monitor (960px). These days, most monitors are wider than
this, but 960px is still a good rule of thumb for content columns.

• Although these systems were popular for a while, they have fallen out
of favour since layouts became responsive.

http://960.gs/

They say:
"The 960 Grid System is an effort to
streamline web development
workflow by providing commonly
used dimensions, based on a width
of 960 pixels. There are two variants:
12 and 16 columns, which can be
used separately or in tandem."

http://960.gs/

Boilerplates

Page layout is one of the areas of web design that has become more complex in recent years. There are 2 key reasons
for this (both good):
1. It has become good practice to employ a grid system for page layouts.
2. A drive towards Responsive Web Design has meant that these grid systems must adapt or respond to different user
clients with varying screen sizes and resolutions.
Standard boilerplates are a convenient way to develop a page layout because they do most of the hard work for you.
However, the code produced is often bloated and will take time and effort to clean them up. At this stage in your
learning, avoid using boilerplates, especially Bootstrap!

http://getskeleton.com/ http://getbootstrap.com/

http://getskeleton.com/
http://getbootstrap.com/

The 5 types of page layout
• Fixed-width layouts

Elements given absolute pixel dimensions for width.

• Fluid layouts
Elements given %age dimensions – popular for a while.

• Elastic layouts
Elements sized using Ems in order to accommodate changing text size.

• Hybrid layouts
Layouts using combinations of the above – maybe one fixed-width column
and one fluid – very popular until the advent of RWD.

• Responsive layouts
Using a combination of fluid layouts and media queries – the modern way.

Layouts: A brief history of techniques

• Browser as container
Content simply flows within the browser window with no containing elements. This is how the original responsive
Web looked.

• Tables
When different page elements were required on a page in the pre-CSS age, tables where the only way to achieve
the required layout but using tables in this way is semantically incorrect.

• Frames
Frames were introduced for Netscape Navigator in 1996. They were a nice idea but proved to have terrible
accessibility problems. This method is now obsolete.

• CSS Floats and CSS Positioning
Recommended for use in 2011 with CSS 2.1 but in practice was used before this. CSS Floats is now the most
common technique for page layouts. CSS Positioning seems more logical but has proved to be inflexible.

• CSS Flexbox
CSS Flexbox has been around for a few years now but was never envisaged as a whole page layout technique but
works well for page elements (e.g. navigation) where one-dimensional alignment is required.

• CSS Grid Layout
In early 2017, CSS Grid Layout arrived and over the following months, most browsers started supporting it. This is
the first time CSS has provided a technique specifically designed for page layouts. It is the future of layouts.

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Introduction

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Introduction

CSS FLOATS
Page Layout

Layouts with floats

• For many years, float layouts have been the norm, and
up until recently, most websites used this technique.

• Using CSS floats is usually convenient because we
don’t have to calculate element positions (as in CSS
positioning), we can allow them to “float”.

• Working with floats also means we can control content
order more easily.

• However, it takes a little more experience to get to
grips with the idea and practice of floating elements.

• It’s still important to understand how floats work
because there are still many sites in the wild that use
this technique.

Markup for a typical page

The markup for this simple layout is shown on the right –
essentially, it consists of 4 semantic elements (content
containers), all within a div wrapper.

<div id="content">

<header>
<h2>This is the…</h2>

</header>

<main>
<h1>A 2 column page layout…</h1>
<h2>The <main> column</h2>
<p>Chocolate lemon drops...</p>
<h2>A 960px wide layout…</h2>
<p>This is not...</p>
<h2>2 columns</h2>
<p>>main< floated...</p>

</main>

<aside>
<h2>The <aside> column</h2>
<p>Biscuit brownie...</p>

</aside>

<footer>
<h2>This is the…</h2>

</footer>

</div> <!– close #content -->

A layout with floats
/* using a crude reset for demo purposes */

* {
padding: 0;
margin: 0;
box-sizing: border-box;

}
#content {

width: 960px;
margin: 0 auto;
border: 1px black dashed;

}
header {

height: 150px;
background-color: #73a51c;

}
main {

width: 640px;
float: left;
background-color: #f59343;

}
aside {

width: 300px;
float: right;
background-color: #ecce02;

}
footer {

clear: both;
background-color: #44a1a1;

}

The CSS has one rule for each container plus a reset. The key
declarations are the 3 indicated. Clearing <footer> is required to
prevent #content from collapsing.

Since #wrapper is 960px wide, <main> is
640px wide and <aside> is 300px wide,
the remaining space (20px) forms the
gutter between the two columns.

Help! Collapsing container
footer {

/*clear:both;*/
background-color:#44a1a1;

}

If we comment out the
clear:both declaration from
<footer>, the containing
element (#content) collapses
because <main> and <aside>
have been floated. Floated
elements are not contained by
their parent element. In this
case, we’re OK because we have
some content within #content
that follows the floated
elements (<footer>), so we
simply clear <footer> and
everything behaves itself.

But what would happen if we
had no footer?

#content collapses and <footer>
jumps up to meet <header> if
<footer> is not cleared.

https://www.websitearchitecture.co.uk/resources/examples/float-collapse/

https://www.websitearchitecture.co.uk/resources/examples/float-collapse/

Nothing to clear
<footer>
</footer>

If we don’t have a footer to
clear, we can’t stop #content
from collapsing once <main>
and <aside> have been floated.

What we need is some method
for dealing with this situation
because it is very common and
unless we can deal with it, CSS
looks like a bad option for laying
out a page.

Without <footer> there is
nothing to stop #content
from collapsing.



overflow: hidden
<div id="content">

#content {
width:960px;
margin:0 auto;
border:1px black dashed;
overflow: hidden;

}

The overflow method of clearing
floats works if we know exactly
what content will be on our
page but it has one downside if
we are dealing with dynamic
content. Content that is too
wide for the container (e.g. a
large image) will be clipped or
“hidden” – that’s what the
overflow declaration is for. We
could also use overflow: auto
but in that case we might see
scroll bars. Surely there’s a more
bulletproof method?

With overflow: hidden
added to the #content
rule, floated child elements
are correctly contained.

Clearfix to the rescue!
<div id="content" class="clearfix">

.clearfix:after {
visibility: hidden;
display: block;
content: "";
clear: both;
height: 0;

}

The clearfix method (some would
call it a hack) works by using CSS
to add content after all other
contained content (in this case, a
null string) and then clearing it.
Other declarations are used to
prevent the added content from
displaying.

There are a number of variations
on this theme but they use the
same basic principle.

With .clearfix added,
#content extends around
all contained elements,
even if they are floated.

http://css-tricks.com/snippets/css/clear-fix/

Do we really need a hack to make a floated layout?
Nope!
Recently arrived is a new CSS
display value that creates a new
Block Formatting Context. As is so
often the case with CSS, it's all a
little bit late in the day, but the
hacky methods are now
deprecated for modern browsers.

The display: flow-root; declaration solves the collapsing
parent issue once and for all, but remember that it is not
understood by older browsers.

<div id="content">

#content {
width:960px;
margin:0 auto;
border:1px black dashed;
display: flow-root;

}

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Block_formatting_context

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Block_formatting_context

Flip columns, retain content order

Content order is an important principle in web design and
the use of floats makes it relatively easy to achieve.

main {
width: 630px;
float: right;
padding-right: 10px;
background-color: #f59343;

}
aside {

width: 290px;
float: left;
padding-left: 10px;
background-color: #ecce02;

}
In this example we are able to
change the visual layout of the
page without changing the
markup. The main page content
always appears first in the
markup, irrespective of where it
appears on the rendered page.
This is done by changing the
direction of the float for each
column, switching from left to
right or vice versa as required.

Clearing Floats (the step problem)

The two images in this content are floated left. Unfortunately, the text content for the Mars article
is not long enough to push the next <h2> element down below the image and so it flows to the
right, which is not what we want. However, we can add a clear rule to <h2> to force it below the
floated element above it and the result is shown on the right.

h2 {clear:left;}
Before clearing After clearing

CSS GRID LAYOUT
Page Layout

CSS Grid Layout
The principle used by the CSS Grid
Layout module is that we always
begin with a parent container for
the grid, and we set: display: grid;
on that container. From that point
on, all child elements become
part of the grid. All we then need
to do is to tell each grid element
where it should be and how many
columns and rows it should
occupy. There are numerous ways
of doing this and the choice may
depend on the complexity of your
grid. One simple method is to set
the start and end grid lines for
columns and rows. For example,
the green area starts at row line 1,
column line 1 and ends at row line
2, column line 3. So, we could
define it like this:
grid-area: 1 / 1 / 2 / 3;

https://gridbyexample.com/

https://gridbyexample.com/

Typical page markup

The markup for this simple grid layout is exactly the same
as for the floated layout.

<div id="content">

<header>
<h2>This is the…</h2>

</header>

<main>
<h1>A 2 column page layout…</h1>
<h2>The <main> column</h2>
<p>Chocolate lemon drops...</p>
<h2>A 960px wide layout…</h2>
<p>This is not...</p>
<h2>2 columns</h2>
<p>>main< floated...</p>

</main>

<aside>
<h2>The <aside> column</h2>
<p>Biscuit brownie...</p>

</aside>

<footer>
<h2>This is the…</h2>

</footer>

</div> <!– close #content -->

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Grids

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Grids

A layout with CSS Grid (areas)
* {

box-sizing: border-box;
}
#content {

display: grid;
grid-template-columns: 640px 300px;
grid-gap: 0 20px;
width: 960px;
margin: 0 auto;
border: 1px black dashed;

}
header {

height: 150px;
background-color: #73a51c;
grid-area: 1 / 1 / 2 / 3;

}
main {

background-color: #f59343;
grid-area: 2 / 1 / 3 / 2;

}
aside {

background-color: #ecce02;
grid-area: 2 / 2 / 3 / 3;

}
footer {

background-color: #44a1a1;
grid-area: 3 / 1 / 4 / 3;

}

The grid area syntax is the simplest and briefest but it’s not particularly intuitive. Each area is
defined by four values for row start, column start, row end and column end. The values refer to
grid lines, not grid areas. For example, a two column grid will have three vertical lines.

A layout with CSS Grid (column/row)
* {

box-sizing: border-box;
}
#content {

display: grid;
grid-template-columns: 640px 300px;
grid-gap: 0 20px;
width: 960px;
margin: 0 auto;
border: 1px black dashed;

}
header {

height: 150px;
background-color: #73a51c;
grid-column: 1 / 3; /* start + end grid line */
grid-row: 1; /* start grid line */

}
main {

background-color: #f59343;
grid-column: 1;
grid-row: 2;

}
aside {

background-color: #ecce02;
grid-column: 2;
grid-row: 2;

}
footer {

background-color: #44a1a1;
grid-column: 1 / 3;
grid-row: 3;

}
CSS Grid provides many ways of achieving the same result. The
CSS on the right uses the grid-column/row method. It’s clearer
than the grid area method but still based on grid lines.

A layout with CSS Grid (named areas)
* {

box-sizing: border-box;
}
#content {

display: grid;
grid-template-columns: 640px 300px;
grid-template-rows: auto;
grid-template-areas:
"header header"
"main aside"
"footer footer";
grid-gap: 0 20px;
width: 960px;
margin: 0 auto;
border: 1px black dashed;

}
header {

height:150px;
background-color: #73a51c;
grid-area: header;

}
main {

background-color: #f59343;
grid-area: main;

}
aside {

background-color: #ecce02;
grid-area: aside;

}
footer {

background-color: #44a1a1;
grid-area: footer;

}

Each element in the grid is given a name (grid-area) and then the
configuration is made using the container (#content) with the
grid-template-areas WYSIWYG syntax.

WYSIWYG Grid with named areas

grid-template-areas:

"header header"

"main aside"

"footer footer";

The named area syntax is by far the easiest to work with for
beginners because it is so easy to visualise.

FLUID LAYOUTS
Page Layout

The problem with fixed layouts…

…is that when the browser window is narrower than the fixed width (960px in this case), the content on the right
cannot be seen without horizontal scrolling. We should therefore consider options for allowing our content columns to
become fluid so that they may resize with the browser window.

Fluid layouts…

…are those in which the width of columns changes in proportion to the width of the browser window. The benefit is
that the content is still visible when the window is narrowed and flows down the columns. Vertical scrolling may still be
required but we will not have to scroll horizontally.

http://www.alistapart.com/articles/fluidgrids/

http://www.alistapart.com/articles/fluidgrids/

Percentages instead of pixels

The width of fluid columns is expressed as a percentage of their parent element rather than as a fixed pixel value. In the
example above, a wrapper <div> is set to 90% of the viewport and then two content elements to 70 and 30%
respectively. Note that 70+30 = 100 and not 90 because the parent element is the context for all child elements.

70% 30%

90% parent = <body>

parent = <div id="content">

target ÷ context = result

Say we have a wrapper with a max-width of 960px and at that size, we want one column to measure 640px but to
decrease proportionately as the wrapper narrows. The percentage can be calculated as 640 ÷ 960 = 0.666666 or
66.6666% (target ÷ context = result). The other column is calculated to be 33.3333%. These numbers never end, they
are recurring. This is a common problem for simple 2:1 ratios.

66.6666% 33.3333%

960px

The CSS

#content {
width: 90%;
max-width: 960px;
min-width: 600px;
margin: 0 auto;
display: grid;
grid-template-columns: 66.6666% 33.3333%;

}

66.6666% 33.3333%

960px

The container (#content) has a width of 90%, which means that there will always be a left/right margin between it and
the viewport edge and the margin declaration is used to centre it. It has a max-width which means lines of text cannot
become too long (readability) and it has a min-width to prevent it becoming too squashed.

Fractional units for CSS Grid

Working with percentages for floated layouts can sometimes be troublesome, especially when the maths gets
complicated. When the CSS Grid Layout module was designed, a better way to describe the ratio of flexible columns was
introduced: fractional units. Fractional units are simple to use and leave the browser to work out the maths. In the
example above, a 2 to 1 ratio is being used where column 1 is twice the width of column 2.
https://medium.com/flexbox-and-grids/the-css-fractional-unit-fr-in-approachable-plain-language-fdc47bd387f7

display: grid;
grid-template-columns: 2fr 1fr;

https://medium.com/flexbox-and-grids/the-css-fractional-unit-fr-in-approachable-plain-language-fdc47bd387f7

The CSS using fr units

#content {
width: 90%;
max-width: 960px;
min-width: 600px;
margin: 0 auto;
display: grid;
grid-template-columns: 2fr 1fr;

}

2fr 1fr

960pxIf we create the same layout using grid,
everything gets easier. We no longer need
percentages because fractional units work
on the basis of ratios, so our simple 2:1
ratio layout can be described as 2fr 1fr.

https://www.youtube.com/watch?v=ZPtpzuRajzM

https://www.youtube.com/watch?v=ZPtpzuRajzM

Can CSS Grid Layout be used now?

All modern browsers now understand CSS grid so it is safe to use in most local contexts. But if you need to support older
browsers or some mobile browsers in emerging markets (such as Opera Mini), you may need to provide a fallback with a
float layout that old or basic browsers will understand.

https://www.smashingmagazine.com/2017/11/css-grid-supporting-browsers-without-grid/

YES…

…but consider fall-backs.

https://www.smashingmagazine.com/2017/11/css-grid-supporting-browsers-without-grid/

CSS Layout
Challenge!

Design for web content: resources

This exercise combines the ideas of
modular grid layouts with their
implementation in CSS.

https://www.websitearchitecture.co.uk/resources/design-for-web-content/examples/class-08-layout-workshop.zip

</presentation>

	Page Layout
	Grids
	12 column grid
	innocentdrinks.co.uk
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	The 960 Grid System
	Boilerplates
	The 5 types of page layout
	Layouts: A brief history of techniques
	CSS Floats
	Layouts with floats
	Markup for a typical page
	A layout with floats
	Help! Collapsing container
	Nothing to clear
	overflow: hidden
	Clearfix to the rescue!
	Do we really need a hack to make a floated layout?
	Flip columns, retain content order
	Clearing Floats (the step problem)
	CSS Grid Layout
	Slide Number 30
	Typical page markup
	A layout with CSS Grid (areas)
	A layout with CSS Grid (column/row)
	A layout with CSS Grid (named areas)
	WYSIWYG Grid with named areas
	Fluid Layouts
	The problem with fixed layouts…
	Fluid layouts…
	Percentages instead of pixels
	target ÷ context = result
	The CSS
	Fractional units for CSS Grid
	The CSS using fr units
	Can CSS Grid Layout be used now?
	CSS Layout Challenge!
	</presentation>

